N40 — Acid Base

Ksp

N40 — Acid Base

Ksp

Target: I can perform K_{sp} calculations to determine the solubility of different salts.

Mostly Review!

Equilibrium constants and ICE Tables.

Only real difference is that your reactant is always a solid so it doesn't show up in the Law of Mass Action.

But that isn't "new" - we've known that forever!

K_{sp} Values for Some Salts at 25°C

Name	Formula	K _{sp}
Barium carbonate	BaCO ₃	2.6 x 10 ⁻⁹
Barium chromate	BaCrO ₄	1.2 x 10 ⁻¹⁰
Barium sulfate	BaSO ₄	1.1 x 10 ⁻¹⁰
Calcium carbonate	CaCO ₃	5.0 x 10 ⁻⁹
Calcium oxalate	CaC ₂ O ₄	2.3 x 10 ⁻⁹
Calcium sulfate	CaSO ₄	7.1 x 10 ⁻⁵
Copper(I) iodide	CuI	1.3 x 10 ⁻¹²
Copper(II) iodate	Cu(IO ₃) ₂	6.9 x 10 ⁻⁸
Copper(II) sulfide	CuS	6.0 x 10 ⁻³⁷
Iron(II) hydroxide	Fe(OH) ₂	4.9 x 10 ⁻¹⁷
Iron(II) sulfide	FeS	6.0 x 10 ⁻¹⁹
Iron(III) hydroxide	Fe(OH) ₃	2.6 x 10 ⁻³⁹
Lead(II) bromide	PbBr ₂	6.6 x 10 ⁻⁶
Lead(II) chloride	PbCl ₂	1.2 x 10 ⁻⁵
Lead(II) iodate	Pb(IO ₃) ₂	3.7 x 10 ⁻¹³
Lead(II) iodide	PbI ₂	8.5 x 10 ⁻⁹
Lead(II) sulfate	PbSO ₄	1.8 x 10 ⁻⁸

Name	Formula	K _{sp}
Lead(II) bromide	PbBr ₂	6.6 x 10 ⁻⁶
Lead(II) chloride	PbCl ₂	1.2 x 10 ⁻⁵
Lead(II) iodate	Pb(IO ₃) ₂	3.7 x 10 ⁻¹³
Lead(II) iodide	PbI ₂	8.5 x 10 ⁻⁹
Lead(II) sulfate	PbSO ₄	1.8 x 10 ⁻⁸
Magnesium carbonate	MgCO ₃	6.8 x 10 ⁻⁶
Magnesium hydroxide	Mg(OH) ₂	5.6 x 10 ⁻¹²
Silver bromate	AgBrO ₃	5.3 x 10 ⁻⁵
Silver bromide	AgBr	5.4 x 10 ⁻¹³
Silver carbonate	Ag ₂ CO ₃	8.5 x 10 ⁻¹²
Silver chloride	AgCI	1.8 x 10 ⁻¹⁰
Silver chromate	Ag ₂ CrO ₄	1.1 x 10 ⁻¹²
Silver iodate	AgIO ₃	3.2 x 10 ⁻⁸
Silver iodide	AgI	8.5 x 10 ⁻¹⁷
Strontium carbonate	SrCO ₃	5.6 x 10 ⁻¹⁰
Strontium fluoride	SrF ₂	4.3 x 10 ⁻⁹
Strontium sulfate	SrSO ₄	3.4 x 10 ⁻⁷
Zinc sulfide	ZnS	2.0 x 10 ⁻²⁵

Solubility

We typically describe the solubility in how much solute can you dissolve in how much solvent.

Moles / Liter Grams / Liter Etc...

Always check what units it wants answers in!

Usually represented by "s"

Solving Solubility Problems

For the salt Agl at 25°C, $K_{sp} = 1.5 \times 10^{-16}$

 $Agl(s) \rightarrow Ag^{+}(aq) + I^{-}(aq)$

I	0	0
C	+X	+X
E	×	X

$$K_{sp} = [Ag^+][I^-]$$

Nothing on the denominator because the reactant was a solid!

$$1.5 \times 10^{-16} = x^2$$

x = s = solubility of Agl in mol/L = 1.2 x 10⁻⁸ M

Solving Solubility Problems When Not 1:1

For the salt PbCl₂ at 25°C,
$$K_{sp} = 1.6 \times 10^{-5}$$

PbCl₂(s) \rightarrow Pb²⁺(aq) + 2Cl⁻(aq)

I	0	0
С	+\$	+2s
E	S	2s

Be careful with the stoichiometry!

$$1.6 \times 10^{-5} = (s)(2s)^2 = 4s^3$$

s = solubility of PbCl₂ in mol/L = 1.6 x 10⁻² M

Common Ion Effect

What happens to the solubility of a substance if one of its ions is already present in the solution?

Will the solubility increase or decrease????

It decreases!

Let's redo this problem but this time let's have some I- already in the solution as should

For the salt AgI at 25°C, $K_{sp} = 1.5 \times 10^{-16}$ AgI(s) \rightarrow Ag⁺(aq) + I⁻(aq) s = solubility of AgI in mol/L = 1.2 x 10⁻⁸ M

in the solution. x should end up less than 1.2 x 10⁻⁸ mol/L

Solving Solubility with a Common Ion

For the salt Agl at 25°C, $K_{sp} = 1.5 \times 10^{-16}$ What is its solubility in 0.05 M Nal?

 $Agl(s) \rightarrow Ag^{+}(aq) + I^{-}(aq)$

I	0	0.05
C	+\$	+\$
Е	S	0.05+s

5% rule!

$$1.5 \times 10^{-16} = (s)(0.05+s) \cong (s)(0.05)$$

s = solubility of AgI in mol/L = $3.0 \times 10^{-15} M$

The molar solubility of Pbl_2 is 1.50×10^{-3} M. Calculate the value of K_{sp} for Pbl_2 .

- **A** 3.38E⁻⁹
- **B** 4.50E⁻⁶
- C 1.35E⁻⁸
- D 1.50E⁻³
- **E** none of these

The molar solubility of Pbl_2 is 1.50×10^{-3} M. Calculate the value of K_{sp} for Pbl_2 .

B 4.50E ⁻⁶

C 1	35	F- 8

D	1.50E ⁻³
D	1.50E ⁻³

Pbl _{2 (s)}	\leftrightarrow	Pb ²⁺ (aq)	+	2l ⁻	(aq)
-		0		0	
-		+ S		+ 2s	

$$K_{sp} = (s)(2s)^{2}$$
 $K_{sp} = 4(s)^{3}$
 $K_{sp} = 4(1.5 \times 10^{-3})^{3}$
 $K_{sp} = 1.35 \times 10^{-8}$

Will Something Precipitate?

Have to check Q versus K!

If Q < K then no precipitate yet! All ions are dissociated still.

As soon as $Q > K_{sp}$ you will have a precipitate! The maximum amount will be dissociated, but the leftover will "crash out" as a solid precipitate.

Qualitatively describing how adding something changes solubility

Another Salt:

Look to see if the dissociated ions are in common

BaCl₂ + NaCl Ba²⁺ 2Cl⁻ Na⁺ Cl⁻

Cl⁻ is in common with BaCl2, so it will decrease the solubility.

BaCl₂ + NaF Ba²⁺ 2Cl⁻ Na⁺ F⁻

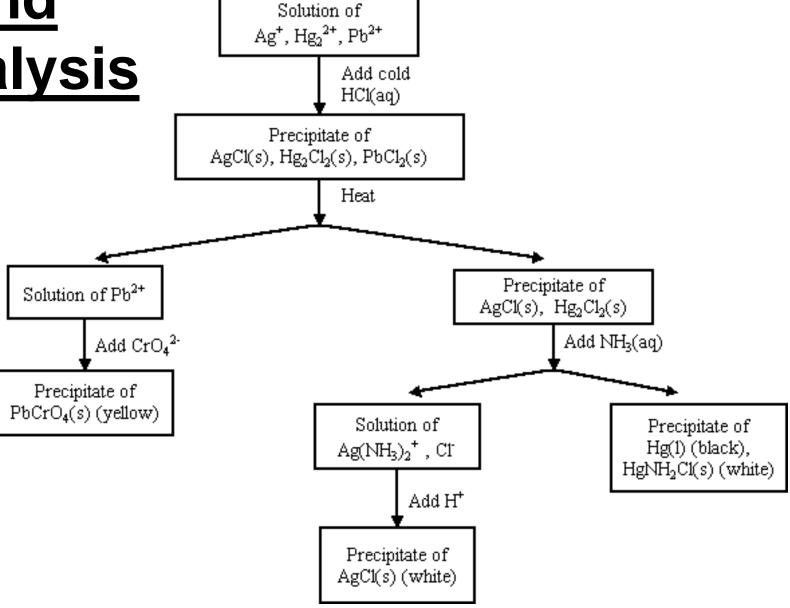
F⁻ is NOT in common with BaCl₂, so it will not change the solubility.

Qualitatively describing how adding something changes solubility

Adding an Acid:

Look to see if the dissociated ions will react with one of the ions from the salt.

$$\frac{\mathsf{BaCl}_2 + \mathsf{HNO}_3}{\mathsf{Ba}^{2+} \, 2\mathsf{Cl}^{-} \, \mathsf{H}^{+} \, \mathsf{NO}_3^{-}}$$

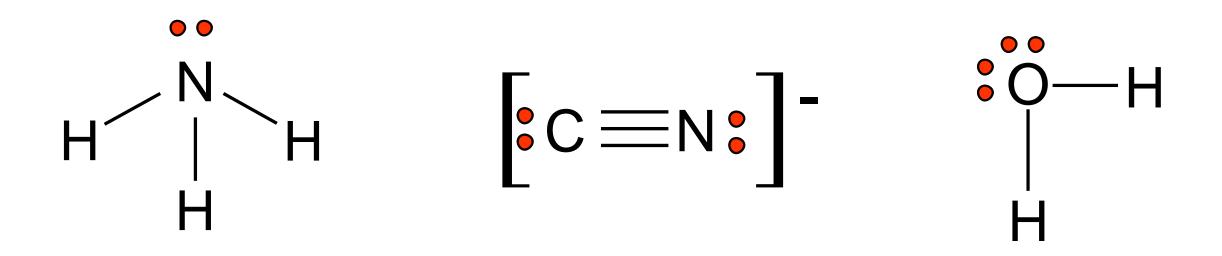

H⁺ and Cl⁻ make a strong acid which stays dissociated.
Doesn't affect the solubility of BaCl₂

$$\frac{\text{CaF}_2 + \text{HNO}_3}{\text{Ca}^{2+} 2\text{F}^{-} \text{H}^{+} \text{NO}_3^{-}}$$

H⁺ and F⁻ make a weak acid which doesn't dissociate fully!
Removes F- ions from solution. Increases the solubility of CaF2, trying to replace F- ions

Precipitation and Qualitative Analysis

Not in the class anymore!


FYI - Complex Ions

Complex ion - a charged species composed of:

- 1. A metallic cation
- 2. Ligands

Ligand – Lewis bases that have a lone electron pair that can form a covalent bond with an empty orbital belonging to the metallic cation

NH₃, CN⁻, and H₂O are Common Ligands

NOTE A lot of Lewis acids/bases act as ligands. They are often involved in solubility problems, which is why we tend to put Ksp in the Acid Base chapter and not always Equilibrium chapter.

Coordination Number

Coordination number

The number of ligands attached to the cation

2, 4, and 6 are the most common coordination numbers

Coordination #	Example(s)	
2	Ag(NH ₃) ₂ ⁺	
4	CoCl ₄ ²⁻ Cu(NH ₃) ₄ ²⁺	
6	Co(H ₂ O) ₆ ²⁺ Ni(NH ₃) ₆ ²⁺	

Complex Ions and Solubility

$$AgCl(s) \leftrightarrows Ag^{+} + Cl^{-}$$
 $K_{sp} = 1.6 \times 10^{-10}$
 $Ag^{-} + NH_{3} \leftrightarrows Ag(NH_{3})^{+}$ $K_{1} = 2.1 \times 10^{3}$
 $Ag(NH_{3})^{+} NH_{3} \leftrightarrows Ag(NH_{3})_{2}^{+}$ $K_{2} = 8.2 \times 10^{3}$
 $AgCl + 2NH_{3} \leftrightarrows Ag(NH_{3})_{2}^{+} + Cl^{-}$ $K = K_{sp} \cdot K_{1} \cdot K_{2}$

$$K = 2.8 \times 10^{-3} = \frac{[Ag(NH_3)_2^+][Cl^-]}{[NH_3]^2}$$

Practice to Glue In

[14] When solid BaF₂ is added to H₂O the following equilibrium is established.

BaF₂(s)
$$\Longrightarrow$$
 Ba²⁺(aq) + 2 F⁻(aq) $K_{sp} = 1.5 \times 10^{-6}$ at 25 °C

- a. Calculate the molar solubility of barium fluoride at 25 °C.
- b. Explain how adding each of the following substances affects the solubility of BaF₂ in water.
 - i. 0.10 M Ba(NO₃)₂
 - ii. 0.10 M HNO₃
- c. In an experiment to determine the K_{sp} of PbF₂ a student starts with 0.10 M Pb(NO₃)₂ and 0.10 M KF and uses the method of serial dilutions to find the lowest [Pb²⁺] and [F̄] that form a precipitate when mixed. If the student uses the concentration of the ions in the combined solution to determine K_{sp} , will the value of K_{sp} calculated be too large, too small or just right? Explain.

$$K_{\rm sp}$$
 for PbF₂ = 4.0×10^{-8}

- d. i. In a solution of 0.010 M barium nitrate and 0.010 M lead(II) nitrate, which will precipitate first, BaF₂ or PbF₂, as NaF(s) is added? Assume volume changes are negligible. Explain (support your answer with calculations).
 - ii. When the more soluble fluoride begins to precipitate, what is the concentration of the cation for the less soluble fluoride that remains in solution?

Key

- a. If $S = \text{molar solubility of BaF}_2$ (s), then $[Ba^{2+}] = S$, $[F^-] = 2S$ $K_{sp} = [Ba^{2+}][F^-]^2 = (S)(2S)^2 = 4S^3 = 1.5 \times 10^{-6}$ S = 0.00721 mol/L
- b. i. Adding Ba²⁺ ion will decrease the molar solubility of BaF₂ due to the common ion effect.
 - ii. Adding H⁺ will increase the molar solubility of BaF₂ as the F⁻ ion will react with H⁺ to form HF, thereby causing more BaF₂ to dissolve by Le Chatelier's Principle.
- c. The calculated K_{sp} will be too large because the student is relying on seeing the formation of a precipitate at the moment that Q exceeds K_{sp}. The student will miss the exact moment that happens, so the calculated value of K_{sp} will be too large.
 - Other possible issues: Protolysis will decrease the concentration of fluoride, so more fluoride will need to be added to cause precipitation; therefore measured K_{sp} will be too large. Likewise, some complex ions such as PbF⁺ or PbF₂ (aq) may form, again leading to an experimental value that is too large.

<u>Key</u>

d. i. As both BaF₂ and PbF₂ are 1:2 compounds, and the concentrations of the metal ions are both 0.010 M, you can tell that PbF₂ will precipitate first, because it has the lower K_{sp}. For calculations to support this:

For PbF₂,
$$4.0 \times 10^{-8} = (0.01)[F^-]^2$$
 $[F^-]^2 = 4.0 \times 10^{-6}$ $[F^-] = 2.0 \times 10^{-3} \text{ M}$
For BaF₂, $1.5 \times 10^{-6} = (0.01)[F^-]^2$ $[F^-]^2 = 1.5 \times 10^{-4}$ $[F^-] = 1.2 \times 10^{-2} \text{ M}$

The PbF₂ will precipitate first because a lower value for the concentration of fluoride is needed.

ii. From part (i) we know that the BaF₂ precipitates second, when the [F⁻] reaches 1.2 x 10^{-2} M Since PbF₂ (s) is present, then [Pb²⁺][F⁻]² = $K_{\rm sp}$ = 4.0 x 10^{-8} [Pb²⁺](1.2 x 10^{-2})² = 4.0 x 10^{-8} [Pb²⁺] = 2.8×10^{-4} M

YouTube Link to Presentation

https://youtu.be/LWIR91gx-ac